GCSE MARKING SCHEME

SUMMER 2022

GCSE
SCIENCE (DOUBLE AWARD) - UNIT 6 HIGHER TIER
3430UF0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE SCIENCE (DOUBLE AWARD) - UNIT 6 - PHYSICS 2

HIGHER TIER

SUMMER 2022 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (apart from the questions where a level of response mark scheme is applied).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.
Extended response question
A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

```
cao = correct answer only
ecf = error carried forward
bod = benefit of doubt
owtte = or words to that effect
```

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1	(a)	(i)		Substitution: work done $=450 \times 0.8(1)$ $\times 2$ (1) $=720$ (1) [J] Answer 360 [J] award 2 marks Alternative: $\begin{aligned} & 2 \times 0.8=1.6[\mathrm{~m}](1) \\ & 450 \times 1.6(1) \\ & =720(1)[\mathrm{J}] \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1		3	3	
		(ii)	Answer from (i) ecf expect 720 [J] or 720 [J]	1			1			
		(iii)	[Work done in overcoming] friction / lifting the forks or [energy transferred as] sound / heat		1		1			
	(b)		$\begin{aligned} & 450-(12 \times 10)=330[\mathrm{~N}](1) \\ & \frac{330}{10}=33(1)[\mathrm{kg}] \end{aligned}$ Alternative: $\begin{aligned} & \frac{450}{10}=45(1)[\mathrm{kg}] \\ & 45-12=33(1)[\mathrm{kg}] \end{aligned}$		2		2	2		
			Question 1 total	3	4	0	7	5	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
2.	(a)	(i)		Callisto		1		1		
		(ii)	Moons of Jupiter get their heat from the Sun / Jupiter doesn't give out much heat / Jupiter isn't a star / Jupiter is a planet (1) They are [about] the same distance from the Sun / don't orbit the Sun (1)			2	2			
		(iii)	Callisto doesn't have the largest mean diameter [so claim not true] Alternative: Callisto has a smaller mean diameter than Ganymede [so claim not true]. Accept the converse. Accept correct reference to data.			1	1			
		(iv)	$671000 \times 2=1342000[\mathrm{~km}]$ [so not true] Alternative: $\frac{1070400}{2}=535200 \mathrm{~km} \text { [so not true] }$ Alternative: $\frac{1070400}{671000}=1.6 \text { [so not true] }$ Alternative: $1070400-671000=399400 \text { [so not true] }$			1	1	1		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)		Box 3. A light minute is the distance travelled by light in 60 seconds. Extra tick award 0 marks	1			1		
	(ii)	$\begin{aligned} & \text { Mean distance }=\frac{588000000}{3.92}(1) \\ & =150000000(1)[\mathrm{km}] \text { accept } 1.5 \times 10^{8}[\mathrm{~km}] \text { or } 150 \times 10^{6}[\mathrm{~km}] \end{aligned}$	1	1		2	2		
		Question 2 total	2	2	4	8	3	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
				0 marks No attempt made or no response worthy of credit.						
(b)	(i)		$F=m a$ or accept in words	1			1			
	(ii)	1	Total mass of train $=2.3\left[\times 10^{5}\right] \times 2(1)=\left[4.6 \times 10^{5}\right] \quad[\mathrm{kg}]$ $=4.6 \times 10^{5} \times 0.7$ $=3.22 \times 10^{5}(1)[\mathrm{N}] \text { accept } 322 \times 10^{3}[\mathrm{~N}]$ Award maximum of 1 mark for $2.3 \times 10^{5} \times 0.7=1.61 \times 10^{5}[\mathrm{~N}] \text { accept } 161 \times 10^{3}[\mathrm{~N}]$ Award 1 mark for answer of 3.22 or 1.61		2		2	2		
		II	Substitution: $0.7=\frac{55.8}{t}(1)$ Rearrangement: time $=79.7$ (1) [s] accept 80 [s]	1	1		2	2		
	(iii)		$2.3\left[\times 10^{5}\right] \times 2=4.6\left[\times 10^{5}\right](1)$ which is approximately 4.4 [$\times 10^{5}$] so this part of claim correct (1) Both trains have same emergency deceleration $/ 1.2 \mathrm{~m} / \mathrm{s}^{2}$ and so will take the same time to stop / this part of the claim is incorrect (1) Alternative: $\frac{4.4\left[\times 10^{5}\right]}{2.3\left[\times 10^{5}\right]}=1.9(1)$ which is approximately 2 so this part of claim correct (1) Both trains have same emergency deceleration $/ 1.2 \mathrm{~m} / \mathrm{s}^{2}$ and so will take the same time to stop / this part of the claim is incorrect (1)			3	3	1		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)			[As the drop height increases] the mean speed increases (1) at a decreasing rate (1) Don't accept speed accelerates or speed increase slows down		2		2		2
	(ii)		1.1 [m/s]		1		1		1	
	(iii)	1	Weight / force of gravity and air resistance / drag	1			1		1	
		11	Forces are balanced / equal	1			1		1	
			Question 5 total	3	5	5	13	6	13	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
6.	(a)			Radiation may come from different directions or to monitor radiation levels across Wales or background radiation may vary across Wales		1		1		
	(b)		Measure count for a lengthy period of time e.g. 5 minutes (1) Divide the count value by the time to get cpm (1) Alternative: Measure count for 1 minute (1) Repeat this numerous times and calculate a mean to get cpm (1)	2			2		2	
	(c)	(i)	It is the time taken to halve (1) number of radioactive particles or nuclei or atoms / activity / mass / amount of substance / count rate (1)	2			2			
		(ii)	8 [days]		1		1	1		
	(d)		$[1 \rightarrow] \frac{1}{2} \rightarrow \frac{1}{4} \rightarrow \frac{1}{8} \rightarrow \frac{1}{16} \rightarrow \frac{1}{32} \rightarrow \frac{1}{64} \rightarrow \frac{1}{128} \rightarrow \frac{1}{256} \rightarrow \frac{1}{512} \text { (1) }$ 9 [half-lives] (1) The first mark can be implied if 9 half-lives shown so two marks can be awarded. $9 \times 30.2=271.8(1) \text { [years] }$ Alternative: $\begin{aligned} & 2^{n}=512(1) \\ & n=9(1) \\ & 9 \times 30.2=271.8(1) \text { [years] } \end{aligned}$		3		3	2		

HIGHER TIER
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
1	3	4	0	7	5	0
2	2	2	4	8	3	0
3	7	0	0	7	0	0
4	5	6	3	14	7	0
5	3	5	5	13	6	13
6	4	7	0	11	3	2
Total	24	24	12	60	24	15

